To meet the goal of ten-fold increase in spectral efficiency, multiuser multiple-input-multiple-output (MU-MIMO) techniques capable of achieving high spatial multiplexing gains are expected to be an essential component of fifth-generation (5G) radio access systems. This increase in multiplexing gain, made possible by equipping base stations with a large number of antennas, entails a proportional increase in channel state information (CSI) acquisition overhead. This article addresses the problem of reducing this CSI overhead by optimizing the amount of time-frequency resources allocated for channel training purposes while not affecting the quality of the associated channel estimate. First we show that in MU-MIMO, adapting pilot symbol density in the time-frequency grid should be performed both on a per resource block (RB) basis and on the basis of groups of users sharing similar channel conditions. Next, we propose a practical scheme that can perform grouping based per-RB pilot pattern adaptation. Finally, we evaluate using both analytical and numerical results the gain in spectral efficiency that can be achieved using this scheme as compared to conventional MU-MIMO systems that use fixed pilot patterns.

Pilot pattern adaptation for 5G MU-MIMO wireless communications

TOMASI, BEATRICE;TOMASIN, STEFANO
2016

Abstract

To meet the goal of ten-fold increase in spectral efficiency, multiuser multiple-input-multiple-output (MU-MIMO) techniques capable of achieving high spatial multiplexing gains are expected to be an essential component of fifth-generation (5G) radio access systems. This increase in multiplexing gain, made possible by equipping base stations with a large number of antennas, entails a proportional increase in channel state information (CSI) acquisition overhead. This article addresses the problem of reducing this CSI overhead by optimizing the amount of time-frequency resources allocated for channel training purposes while not affecting the quality of the associated channel estimate. First we show that in MU-MIMO, adapting pilot symbol density in the time-frequency grid should be performed both on a per resource block (RB) basis and on the basis of groups of users sharing similar channel conditions. Next, we propose a practical scheme that can perform grouping based per-RB pilot pattern adaptation. Finally, we evaluate using both analytical and numerical results the gain in spectral efficiency that can be achieved using this scheme as compared to conventional MU-MIMO systems that use fixed pilot patterns.
2016
IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
17th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2016
9781509017492
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3215435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact