This study reports the preparation and characterization of a new family of electrocatalysts (ECs) for the oxygen reduction reaction (ORR) exhibiting a “core-shell” morphology. The “core” consists of graphene sheets, which are covered by a carbon nitride (CN) “shell” embedding Au and Ni active sites. The investigated ECs are labeled AuNi10-CNl 600/Gr and AuNi10-CNl 900/Gr. The chemical composition and thermal stability are studied by inductively-coupled plasma atomic emission spectroscopy (ICPAES), elemental analysis and by high-resolution thermogravimetric analysis (HR-TGA). The morphology of the ECs is probed by scanning electron microscopy (SEM), highresolution transmission electron microscopy (HR-TEM) and powder X-ray diffraction (XRD). The ORR performance of the ECs is studied both in acid (0.1 M HClO4) and in alkaline medium (0.1 M KOH) by Cyclic Voltammetry with the Thin-Film Rotating Ring-Disk Electrode (CV-TF-RRDE) method. Both ECs exhibit a promising performance in the ORR in the alkaline medium
Graphene-Supported Au-Ni Carbon Nitride Electrocatalysts for the ORR in Alkaline Environment
NEGRO, ENRICO;VEZZU', KETI;BERTASI, FEDERICO;Nawn, Graeme;PAGOT, GIOELE;DI NOTO, VITO
2016
Abstract
This study reports the preparation and characterization of a new family of electrocatalysts (ECs) for the oxygen reduction reaction (ORR) exhibiting a “core-shell” morphology. The “core” consists of graphene sheets, which are covered by a carbon nitride (CN) “shell” embedding Au and Ni active sites. The investigated ECs are labeled AuNi10-CNl 600/Gr and AuNi10-CNl 900/Gr. The chemical composition and thermal stability are studied by inductively-coupled plasma atomic emission spectroscopy (ICPAES), elemental analysis and by high-resolution thermogravimetric analysis (HR-TGA). The morphology of the ECs is probed by scanning electron microscopy (SEM), highresolution transmission electron microscopy (HR-TEM) and powder X-ray diffraction (XRD). The ORR performance of the ECs is studied both in acid (0.1 M HClO4) and in alkaline medium (0.1 M KOH) by Cyclic Voltammetry with the Thin-Film Rotating Ring-Disk Electrode (CV-TF-RRDE) method. Both ECs exhibit a promising performance in the ORR in the alkaline mediumPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.