We prove a height-estimate (distance from the tangent hyperplane) for Lambda-minima of the perimeter in the sub-Riemannian Heisenberg group. The estimate is in terms of a power of the excess (L^2-mean oscillation of the normal) and its proof is based on a new coarea formula for rectifiable sets in the Heisenberg group.
Height estimate and slicing formulas in the Heisenberg group
MONTI, ROBERTO;VITTONE, DAVIDE
2015
Abstract
We prove a height-estimate (distance from the tangent hyperplane) for Lambda-minima of the perimeter in the sub-Riemannian Heisenberg group. The estimate is in terms of a power of the excess (L^2-mean oscillation of the normal) and its proof is based on a new coarea formula for rectifiable sets in the Heisenberg group.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
apde-v8-n6-p04-p.pdf
accesso aperto
Descrizione: 2015-MontiV-APDE
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.