Due to the recent experimental progress, tunable spin-orbit (SO) interactions represent ideal candidates for the control of polarization and dynamical spin properties in both quantum wells and cold atomic systems. A detailed understanding of spin properties in SO-coupled systems is thus a compelling prerequisite for possible novel applications or improvements in the context of spintronics and quantum computers. Here, we analyze the case of equal Rashba and Dresselhaus couplings in both homogeneous and laterally confined two-dimensional systems. Starting from the single-particle picture and subsequently introducing two-body interactions we observe that periodic spin fluctuations can be induced and maintained in the system. Through an analytical derivation, we show that the two-body interaction does not involve decoherence effects in the bosonic dimer, and, in the repulsive homogeneous Fermi gas, it may be even exploited in combination with the SO coupling to induce and tune standing currents. By further studying the effects of a harmonic lateral confinement-a particularly interesting case for Bose condensates-we evidence the possible appearance of nontrivial spin textures, whereas the further application of a small Zeeman-type interaction can be exploited to fine-tune the system's polarizability.

Dynamical Spin Properties of Confined Fermi and Bose Systems in the Presence of Spin-Orbit Coupling

AMBROSETTI, ALBERTO;SALASNICH, LUCA;SILVESTRELLI, PIER LUIGI
2016

Abstract

Due to the recent experimental progress, tunable spin-orbit (SO) interactions represent ideal candidates for the control of polarization and dynamical spin properties in both quantum wells and cold atomic systems. A detailed understanding of spin properties in SO-coupled systems is thus a compelling prerequisite for possible novel applications or improvements in the context of spintronics and quantum computers. Here, we analyze the case of equal Rashba and Dresselhaus couplings in both homogeneous and laterally confined two-dimensional systems. Starting from the single-particle picture and subsequently introducing two-body interactions we observe that periodic spin fluctuations can be induced and maintained in the system. Through an analytical derivation, we show that the two-body interaction does not involve decoherence effects in the bosonic dimer, and, in the repulsive homogeneous Fermi gas, it may be even exploited in combination with the SO coupling to induce and tune standing currents. By further studying the effects of a harmonic lateral confinement-a particularly interesting case for Bose condensates-we evidence the possible appearance of nontrivial spin textures, whereas the further application of a small Zeeman-type interaction can be exploited to fine-tune the system's polarizability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3199804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact