A group G is invariably generated by a subset S of G if G = 〈sg(s) | s ∈ S〉 for each choice of g(s) ∈ G, s ∈ S. Answering two questions posed by Kantor, Lubotzky and Shalev in [8], we prove that the free prosoluble group of rank d ≥ 2 cannot be invariably generated by a finite set of elements, while the free solvable profinite group of rank d and derived length l is invariably generated by precisely l(d − 1) + 1 elements. © 2016, Hebrew University of Jerusalem.
Invariable generation of prosoluble groups
DETOMI, ELOISA MICHELA;LUCCHINI, ANDREA
2016
Abstract
A group G is invariably generated by a subset S of G if G = 〈sg(s) | s ∈ S〉 for each choice of g(s) ∈ G, s ∈ S. Answering two questions posed by Kantor, Lubotzky and Shalev in [8], we prove that the free prosoluble group of rank d ≥ 2 cannot be invariably generated by a finite set of elements, while the free solvable profinite group of rank d and derived length l is invariably generated by precisely l(d − 1) + 1 elements. © 2016, Hebrew University of Jerusalem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
invgensolFinal.pdf
accesso aperto
Descrizione: post-print dell'autore
Tipologia:
Postprint (accepted version)
Licenza:
Accesso libero
Dimensione
298.1 kB
Formato
Adobe PDF
|
298.1 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.