For a finite group G we investigate the difference between the maximum size MaxDim (G) of an “independent” family of maximal subgroups of G and maximum size m(G) of an irredundant sequence of generators of G. We prove that MaxDim (G) = m(G) if the derived subgroup of G is nilpotent. However, MaxDim (G) - m(G) can be arbitrarily large: for any odd prime p, we construct a finite soluble group with Fitting length two satisfying m(G) = 3 and MaxDim (G) = p. © 2015, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg.

Maximal subgroups of finite soluble groups in general position

DETOMI, ELOISA MICHELA;LUCCHINI, ANDREA
2016

Abstract

For a finite group G we investigate the difference between the maximum size MaxDim (G) of an “independent” family of maximal subgroups of G and maximum size m(G) of an irredundant sequence of generators of G. We prove that MaxDim (G) = m(G) if the derived subgroup of G is nilpotent. However, MaxDim (G) - m(G) can be arbitrarily large: for any odd prime p, we construct a finite soluble group with Fitting length two satisfying m(G) = 3 and MaxDim (G) = p. © 2015, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3199294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact