Wearable Internet of Things (IoT) devices permit the massive collection of biosignals (e.g., heart-rate, oxygen level, respiration, blood pressure, photo-plethysmographic signal, etc.) at low cost. These, can be used to help address the individual fitness needs of the users and could be exploited within personalized healthcare plans. In this letter, we are concerned with the design of lightweight and efficient algorithms for the lossy compression of these signals. In fact, we underline that compression is a key functionality to improve the lifetime of IoT devices, which are often energy constrained, allowing the optimization of their internal memory space and the efficient transmission of data over their wireless interface. To this end, we advocate the use of autoencoders as an efficient and computationally lightweight means to compress biometric signals. While the presented techniques can be used with any signal showing a certain degree of periodicity, in this letter we apply them to ECG traces, showing quantitative results in terms of compression ratio, reconstruction error and computational complexity. State of the art solutions are also compared with our approach.

Lightweight Lossy Compression of Biometric Patterns via Denoising Autoencoders

DEL TESTA, DAVIDE;ROSSI, MICHELE
2015

Abstract

Wearable Internet of Things (IoT) devices permit the massive collection of biosignals (e.g., heart-rate, oxygen level, respiration, blood pressure, photo-plethysmographic signal, etc.) at low cost. These, can be used to help address the individual fitness needs of the users and could be exploited within personalized healthcare plans. In this letter, we are concerned with the design of lightweight and efficient algorithms for the lossy compression of these signals. In fact, we underline that compression is a key functionality to improve the lifetime of IoT devices, which are often energy constrained, allowing the optimization of their internal memory space and the efficient transmission of data over their wireless interface. To this end, we advocate the use of autoencoders as an efficient and computationally lightweight means to compress biometric signals. While the presented techniques can be used with any signal showing a certain degree of periodicity, in this letter we apply them to ECG traces, showing quantitative results in terms of compression ratio, reconstruction error and computational complexity. State of the art solutions are also compared with our approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3194703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 47
social impact