Graph kernels are widely adopted in real-world applications that involve learning on graph data. Different graph kernels have been proposed in literature, but no theoretical comparison among them is present. In this paper we provide a formal definition for the expressiveness of a graph kernel by means of the Rademacher Complexity, and analyze the differences among some state-of-the-art graph kernels. Results on real world datasets confirm some known properties of graph kernels, showing that the Rademacher Complexity is indeed a suitable measure for this analysis.

Measuring the Expressivity of Graph Kernels through the Rademacher Complexity

NAVARIN, NICOLO';DONINI, MICHELE;SPERDUTI, ALESSANDRO;AIOLLI, FABIO;
2016

Abstract

Graph kernels are widely adopted in real-world applications that involve learning on graph data. Different graph kernels have been proposed in literature, but no theoretical comparison among them is present. In this paper we provide a formal definition for the expressiveness of a graph kernel by means of the Rademacher Complexity, and analyze the differences among some state-of-the-art graph kernels. Results on real world datasets confirm some known properties of graph kernels, showing that the Rademacher Complexity is indeed a suitable measure for this analysis.
2016
24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2016
978-287587026-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3194328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact