The paper describes a migration strategy to improve classical non-dominated sorting genetic algorithm (NSGA) to find optimal solution of a multi-objective problem. Migration NSGA has been tested to assess its performance using analytical functions for which the Pareto front is known in analytical form, as well as two case studies in electromagnetics, for which the Pareto front is not known a priori. This strategy improves the approximation of the Pareto-optimal solutions of a multi-objective problem by introducing new individuals in the population miming the effect of migrations.

Migration NSGA: method to improve a non-elitist searching of Pareto front, with application in magnetics

SIENI, ELISABETTA;FORZAN, MICHELE
2016

Abstract

The paper describes a migration strategy to improve classical non-dominated sorting genetic algorithm (NSGA) to find optimal solution of a multi-objective problem. Migration NSGA has been tested to assess its performance using analytical functions for which the Pareto front is known in analytical form, as well as two case studies in electromagnetics, for which the Pareto front is not known a priori. This strategy improves the approximation of the Pareto-optimal solutions of a multi-objective problem by introducing new individuals in the population miming the effect of migrations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3192109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
  • OpenAlex ND
social impact