We outline the main models and developments in the broad field of artificial neural networks (ANN). A brief introduction to biological neurons motivates the initial formal neuron model – the perceptron. We then study how such formal neurons can be generalized and connected in network structures. Starting with the biologically motivated layered structure of ANN (feed-forward ANN), the networks are then generalized to include feedback loops (recurrent ANN) and even more abstract generalized forms of feedback connections (recursive neuronal networks) enabling processing of structured data, such as sequences, trees, and graphs. We also introduce ANN models capable of forming topographic lower-dimensional maps of data (self-organizing maps). For each ANN type we outline the basic principles of training the corresponding ANN models on an appropriate data collection.

Artificial Neural Network Models

SPERDUTI, ALESSANDRO
2015

Abstract

We outline the main models and developments in the broad field of artificial neural networks (ANN). A brief introduction to biological neurons motivates the initial formal neuron model – the perceptron. We then study how such formal neurons can be generalized and connected in network structures. Starting with the biologically motivated layered structure of ANN (feed-forward ANN), the networks are then generalized to include feedback loops (recurrent ANN) and even more abstract generalized forms of feedback connections (recursive neuronal networks) enabling processing of structured data, such as sequences, trees, and graphs. We also introduce ANN models capable of forming topographic lower-dimensional maps of data (self-organizing maps). For each ANN type we outline the basic principles of training the corresponding ANN models on an appropriate data collection.
2015
Springer Handbook of Computational Intelligence
978-3-662-43504-5
978-3-662-43505-2
978-3-662-43504-5
978-3-662-43505-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3188758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact