We outline the main models and developments in the broad field of artificial neural networks (ANN). A brief introduction to biological neurons motivates the initial formal neuron model – the perceptron. We then study how such formal neurons can be generalized and connected in network structures. Starting with the biologically motivated layered structure of ANN (feed-forward ANN), the networks are then generalized to include feedback loops (recurrent ANN) and even more abstract generalized forms of feedback connections (recursive neuronal networks) enabling processing of structured data, such as sequences, trees, and graphs. We also introduce ANN models capable of forming topographic lower-dimensional maps of data (self-organizing maps). For each ANN type we outline the basic principles of training the corresponding ANN models on an appropriate data collection.
Artificial Neural Network Models
SPERDUTI, ALESSANDRO
2015
Abstract
We outline the main models and developments in the broad field of artificial neural networks (ANN). A brief introduction to biological neurons motivates the initial formal neuron model – the perceptron. We then study how such formal neurons can be generalized and connected in network structures. Starting with the biologically motivated layered structure of ANN (feed-forward ANN), the networks are then generalized to include feedback loops (recurrent ANN) and even more abstract generalized forms of feedback connections (recursive neuronal networks) enabling processing of structured data, such as sequences, trees, and graphs. We also introduce ANN models capable of forming topographic lower-dimensional maps of data (self-organizing maps). For each ANN type we outline the basic principles of training the corresponding ANN models on an appropriate data collection.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.