This paper presents the comparative analysis of HFO1234ze(E) and HFC134a during vaporisation inside a 4 mm smooth tube. The experimental tests were carried out at three different saturation temperatures (10, 15, and 20 °C) at increasing vapour quality up to incipient dryout to evaluate the specific contribution of heat flux, refrigerant mass flux, mean vapour quality, and saturation temperature (pressure). The heat transfer coefficients have a positive slope versus vapour quality and the slope increases with refrigerant mass flux and decreases with heat flux. Saturation temperature (pressure), refrigerant mass flux and mean vapour quality have a remarkable impact on the frictional pressure drop of both HFO1234ze(E) and HFC134a whereas the effect of heat flux appears marginal or negligible. Convective boiling seems to be the prevailing heat transfer regime in the present experimental tests. HFO1234ze(E) exhibits heat transfer coefficients similar to HFC134a and slightly higher frictional pressure drops.
Saturated flow boiling of HFC134a and its low GWP substitute HFO1234ze(E) inside a 4 mm horizontal smooth tube
LONGO, GIOVANNI ANTONIO;MANCIN, SIMONE;RIGHETTI, GIULIA;ZILIO, CLAUDIO
2016
Abstract
This paper presents the comparative analysis of HFO1234ze(E) and HFC134a during vaporisation inside a 4 mm smooth tube. The experimental tests were carried out at three different saturation temperatures (10, 15, and 20 °C) at increasing vapour quality up to incipient dryout to evaluate the specific contribution of heat flux, refrigerant mass flux, mean vapour quality, and saturation temperature (pressure). The heat transfer coefficients have a positive slope versus vapour quality and the slope increases with refrigerant mass flux and decreases with heat flux. Saturation temperature (pressure), refrigerant mass flux and mean vapour quality have a remarkable impact on the frictional pressure drop of both HFO1234ze(E) and HFC134a whereas the effect of heat flux appears marginal or negligible. Convective boiling seems to be the prevailing heat transfer regime in the present experimental tests. HFO1234ze(E) exhibits heat transfer coefficients similar to HFC134a and slightly higher frictional pressure drops.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.