We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at root s(NN) = 2.76 TeV as a function of collision centrality and the average transverse momentum of the pair k(T). Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with k(T), following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with < dN(ch)/d eta >(1/3). This behavior is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller root s(NN), a decrease in the ratio R-out/R-side is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. The results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider.
Centrality dependence of pion freeze-out radii in Pb-Pb collisions at root s(NN)=2.76 TeV
FESTANTI, ANDREA;GIUBILATO, PIERO;LUNARDON, MARCELLO;MORANDO, MAURIZIO;MORETTO, SANDRA;ROSSI, ANDREA;SCARLASSARA, FERNANDO;SORAMEL, FRANCESCA;TERREVOLI, CRISTINA;VIESTI, GIUSEPPE;
2016
Abstract
We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at root s(NN) = 2.76 TeV as a function of collision centrality and the average transverse momentum of the pair k(T). Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with k(T), following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with < dN(ch)/d eta >(1/3). This behavior is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller root s(NN), a decrease in the ratio R-out/R-side is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. The results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.