Factor VII (FVII) deficiency is one of the two congenital coagulation disorders that was not discovered by the description of a new bleeding patient whose clotting pattern did not fit the blood coagulation knowledge of the time (the other is factor XIII deficiency). The existence of an additional factor capable of accelerating the conversion of prothrombin into thrombin was suspected before 1951, the year in which the first family with FVII deficiency was discovered. As several investigators were involved in the discovery of FVII deficiency from both sides of the Atlantic, several different names were tentatively suggested to define this entity, namely stable factor (in contrast with labile factor or FV), cothromboplastin, proconvertin, serum prothrombin conversion accelerator, prothrombin acceleration, and autoprothrombin I. The last term was proposed by those who denied the existence of this new entity, which was instead considered to be a derivate of prothrombin activation, namely autoprothrombin. The description of several families, from all over the world, of the same defect, however clearly demonstrated the singularity of the condition. Factor VII was then proposed to define this protein. In subsequent years, several variants were described with peculiar reactivity toward tissue thromboplastins of different origin. Molecular biology techniques demonstrated several gene mutations, usually missense mutations, often involving exon 8 of the FVII gene. Later studies dealt with the relation of FVII with tissue factor and activated FVII (FVIIa). The evaluation of circulating FVIIa was made possible by the use of a truncated form of tissue factor, which is only sensitive to FVIIa present in the circulation. The development of FVII concentrates, both plasma derived and recombinant, has facilitated therapeutic management of FVII-deficient patients. The use of FVIIa concentrates was noted to be associated with the occasional occurrence of thrombotic events, mainly venous. Total or partial liver transplants have been performed with success in these patients and have “cured” their deficiencies. Prenatal diagnosis has also been performed and recent research involves the development of inhibitors of FVII + tissue factor complex or of FVIIa. This approach, if successful, could provide another antithrombotic therapeutics tool. The story of FVII well summarizes the efforts of both theoretical and clinical approaches in the characterization of a coagulation disorder, that is, among the rare bleeding conditions, most frequently encountered in clinical practice.
The story of serum prothrombin conversion accelerator, proconvertin, stable factor, cothromboplastin, prothrombin accelerator or autoprothrombin I, and their subsequent merging into factor VII
GIROLAMI, ANTONIO;COSI, ELISABETTA;SANTAROSSA, CLAUDIA;FERRARI, SILVIA;RANDI, MARIA LUIGIA
2015
Abstract
Factor VII (FVII) deficiency is one of the two congenital coagulation disorders that was not discovered by the description of a new bleeding patient whose clotting pattern did not fit the blood coagulation knowledge of the time (the other is factor XIII deficiency). The existence of an additional factor capable of accelerating the conversion of prothrombin into thrombin was suspected before 1951, the year in which the first family with FVII deficiency was discovered. As several investigators were involved in the discovery of FVII deficiency from both sides of the Atlantic, several different names were tentatively suggested to define this entity, namely stable factor (in contrast with labile factor or FV), cothromboplastin, proconvertin, serum prothrombin conversion accelerator, prothrombin acceleration, and autoprothrombin I. The last term was proposed by those who denied the existence of this new entity, which was instead considered to be a derivate of prothrombin activation, namely autoprothrombin. The description of several families, from all over the world, of the same defect, however clearly demonstrated the singularity of the condition. Factor VII was then proposed to define this protein. In subsequent years, several variants were described with peculiar reactivity toward tissue thromboplastins of different origin. Molecular biology techniques demonstrated several gene mutations, usually missense mutations, often involving exon 8 of the FVII gene. Later studies dealt with the relation of FVII with tissue factor and activated FVII (FVIIa). The evaluation of circulating FVIIa was made possible by the use of a truncated form of tissue factor, which is only sensitive to FVIIa present in the circulation. The development of FVII concentrates, both plasma derived and recombinant, has facilitated therapeutic management of FVII-deficient patients. The use of FVIIa concentrates was noted to be associated with the occasional occurrence of thrombotic events, mainly venous. Total or partial liver transplants have been performed with success in these patients and have “cured” their deficiencies. Prenatal diagnosis has also been performed and recent research involves the development of inhibitors of FVII + tissue factor complex or of FVIIa. This approach, if successful, could provide another antithrombotic therapeutics tool. The story of FVII well summarizes the efforts of both theoretical and clinical approaches in the characterization of a coagulation disorder, that is, among the rare bleeding conditions, most frequently encountered in clinical practice.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.