Single residue mutations in proteins are known to affect protein stability and function. As a consequence, they can be disease associated. Available computational methods starting from protein sequence/structure can predict whether a mutated residue is or not disease associated and whether it is promoting instability of the protein-folded structure. However, the relationship among stability changes in proteins and their involvement in human diseases still needs to be fully exploited. Here, we try to rationalize in a nutshell the complexity of the question by generalizing over information already stored in public databases. For each single aminoacid polymorphysm (SAP) type, we derive the probability of being disease-related (Pd) and compute from thermodynamic data three indexes indicating the probability of decreasing (P-), increasing (P+), and perturbing the protein structure stability (Pp). Statistically validated analysis of the different P/Pd correlations indicate that Pd best correlates with Pp. Pp/Pd correlation values are as high as 0.49, and increase up to 0.67 when data variability is taken into consideration. This is indicative of a medium/good correlation among Pd and Pp and corroborates the assumption that protein stability changes can also be disease associated at the proteome level.

Correlating disease related mutations to their effect on protein stability: a large scale analysis of the human proteome

Fariselli, Piero;
2011

Abstract

Single residue mutations in proteins are known to affect protein stability and function. As a consequence, they can be disease associated. Available computational methods starting from protein sequence/structure can predict whether a mutated residue is or not disease associated and whether it is promoting instability of the protein-folded structure. However, the relationship among stability changes in proteins and their involvement in human diseases still needs to be fully exploited. Here, we try to rationalize in a nutshell the complexity of the question by generalizing over information already stored in public databases. For each single aminoacid polymorphysm (SAP) type, we derive the probability of being disease-related (Pd) and compute from thermodynamic data three indexes indicating the probability of decreasing (P-), increasing (P+), and perturbing the protein structure stability (Pp). Statistically validated analysis of the different P/Pd correlations indicate that Pd best correlates with Pp. Pp/Pd correlation values are as high as 0.49, and increase up to 0.67 when data variability is taken into consideration. This is indicative of a medium/good correlation among Pd and Pp and corroborates the assumption that protein stability changes can also be disease associated at the proteome level.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3183977
Citazioni
  • ???jsp.display-item.citation.pmc??? 43
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 71
  • OpenAlex ND
social impact