For a finite noncyclic group G, let γ(G) be the smallest integer k such that G contains k proper subgroups H1,..., Hk with the property that every element of G is contained in Hig for some i∈{1,..., k} and g∈G. We prove that if G is a noncyclic permutation group of degree n, then γ(G)≤(n+2)/2. We then investigate the structure of the groups G with γ(G)=σ(G) (where σ(G) is the size of a minimal cover of G) and of those with γ(G)=2.

Covers and normal covers of finite groups

GARONZI, MARTINO;LUCCHINI, ANDREA
2015

Abstract

For a finite noncyclic group G, let γ(G) be the smallest integer k such that G contains k proper subgroups H1,..., Hk with the property that every element of G is contained in Hig for some i∈{1,..., k} and g∈G. We prove that if G is a noncyclic permutation group of degree n, then γ(G)≤(n+2)/2. We then investigate the structure of the groups G with γ(G)=σ(G) (where σ(G) is the size of a minimal cover of G) and of those with γ(G)=2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3183780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact