Most multivariate variance or volatility models suffer from a common problem, the “curse of dimensionality”. For this reason, most are fitted under strong parametric restrictions that reduce the interpretation and flexibility of the models. Recently, the literature has focused on multivariate models with milder restrictions, whose purpose is to combine the need for interpretability and efficiency faced by model users with the computational problems that may emerge when the number of assets can be very large. A contribution to this strand of the literature including a block-type parameterization for multivariate stochastic volatility models is provided. The empirical analysis on stock returns on the US market shows that 1% and 5% Value-at-Risk thresholds based on one-step-ahead forecasts of covariances by the new specification are satisfactory for the period including the Global Financial Crisis.

Forecasting Value-at-Risk using block structure multivariate stochastic volatility models

CAPORIN, MASSIMILIANO;
2015

Abstract

Most multivariate variance or volatility models suffer from a common problem, the “curse of dimensionality”. For this reason, most are fitted under strong parametric restrictions that reduce the interpretation and flexibility of the models. Recently, the literature has focused on multivariate models with milder restrictions, whose purpose is to combine the need for interpretability and efficiency faced by model users with the computational problems that may emerge when the number of assets can be very large. A contribution to this strand of the literature including a block-type parameterization for multivariate stochastic volatility models is provided. The empirical analysis on stock returns on the US market shows that 1% and 5% Value-at-Risk thresholds based on one-step-ahead forecasts of covariances by the new specification are satisfactory for the period including the Global Financial Crisis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3182758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact