In general, in most organ systems, intracellular protein homeostasis is the sum of many factors, including chromosomal state, protein synthesis, post-translational processing and transport, folding, assembly and disassembly into macromolecular complexes, protein stability and clearance. In the heart, there has been a focus on the gene programs that are activated during pathogenic processes, but the removal of damaged proteins and organelles has been underappreciated as playing an important role in the pathogenesis of heart disease. Proteotoxicity refers to the adverse effects of damaged or misfolded proteins and even organelles on the cell. At the cellular level, the ultimate outcome of uncontrolled or severe proteotoxicity is cell death; hence, the pathogenic impact of proteotoxicity is maximally manifested in organs with no or very poor regenerative capability such as the brain and the heart. Evidence for increased cardiac proteotoxicity is rapidly mounting for a large subset of congenital and acquired human heart disease. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteotoxicity as a major pathogenic factor in the heart. This dictates rigorous testing for the efficacy of proteotoxic attenuation as a new strategy to treat heart disease. This review article highlights some recent advances in our understanding of how misfolded proteins can injure and are handled in the cell, examining the emerging evidence for targeting proteotoxicity as a new therapeutic strategy for heart disease

Proteotoxicity: an underappreciated pathology in cardiac disease.

SANDRI, MARCO;
2014

Abstract

In general, in most organ systems, intracellular protein homeostasis is the sum of many factors, including chromosomal state, protein synthesis, post-translational processing and transport, folding, assembly and disassembly into macromolecular complexes, protein stability and clearance. In the heart, there has been a focus on the gene programs that are activated during pathogenic processes, but the removal of damaged proteins and organelles has been underappreciated as playing an important role in the pathogenesis of heart disease. Proteotoxicity refers to the adverse effects of damaged or misfolded proteins and even organelles on the cell. At the cellular level, the ultimate outcome of uncontrolled or severe proteotoxicity is cell death; hence, the pathogenic impact of proteotoxicity is maximally manifested in organs with no or very poor regenerative capability such as the brain and the heart. Evidence for increased cardiac proteotoxicity is rapidly mounting for a large subset of congenital and acquired human heart disease. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteotoxicity as a major pathogenic factor in the heart. This dictates rigorous testing for the efficacy of proteotoxic attenuation as a new strategy to treat heart disease. This review article highlights some recent advances in our understanding of how misfolded proteins can injure and are handled in the cell, examining the emerging evidence for targeting proteotoxicity as a new therapeutic strategy for heart disease
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3169546
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 50
  • OpenAlex ND
social impact