AIM: This study investigated the mechanisms of protection afforded by the proton pump inhibitor lansoprazole against gastric injury induced by different non-steroidal anti-inflammatory drugs (NSAIDs) in rats. METHODS: Male Sprague-Dawley rats were orally treated with indomethacin (100 micromol/kg), diclofenac (60 micromol/kg), piroxicam (150 micromol/kg) or ketoprofen (150 micromol/kg). Thirty minutes before NSAIDs, animals were orally treated with lansoprazole 18 or 90 micromol/kg. Four hours after the end of treatments, the following parameters were assessed: gastric mucosal PGE2, malondialdehyde (MDA), myeloperoxidase (MPO) or non-proteic sulfhydryl compounds (GSH) levels; reverse transcription-polymerase chain reaction (RT-PCR) of mucosal COX-2 mRNA; gastric acid secretion in pylorus-ligated animals; in vitro effects of lansoprazole (1-300 micromol/L) on the oxidation of low density lipoproteins (LDLs) induced by copper sulphate. RESULTS: All NSAIDs elicited mucosal necrotic lesions which were associated with neutrophil infiltration and reduction of PGE2 levels. Increments of MPO and MDA contents, as well as a decrease in GSH levels were detected in the gastric mucosa of indomethacin- or piroxicam-treated animals. Indomethacin enhanced mucosal cyclooxygenase-2 expression, while not affecting cyclooxygenase-1. At the oral dose of 18 micromol/kg lansoprazole partly counteracted diclofenac-induced mucosal damage, whereas at 90 micromol/kg it markedly prevented injuries evoked by all test NSAIDs. Lansoprazole at 90 micromol/kg reversed also the effects of NSAIDs on MPO, MDA and GSH mucosal contents, without interfering with the decrease in PGE2 levels or indomethacin-induced cyclooxygenase-2 expression. However, both lansoprazole doses markedly inhibited acid secretion in pylorus-ligated rats. Lansoprazole concentration-dependently reduced the oxidation of LDLs in vitro. CONCLUSION: These results suggest that, besides the inhibition of acid secretion, lansoprazole protection against NSAID-induced gastric damage depends on a reduction in mucosal oxidative injury, which is also responsible for an increment of sulfhydryl radical bioavailability. It is also suggested that lansoprazole does not influence the down-regulation of gastric prostaglandin production associated with NSAID treatment.
Lansoprazole prevents experimental gastric injury induced by non-steroidal anti-inflammatory drugs through a reduction of mucosal oxidative damage
COLUCCI, ROCCHINA LUCIA;
2005
Abstract
AIM: This study investigated the mechanisms of protection afforded by the proton pump inhibitor lansoprazole against gastric injury induced by different non-steroidal anti-inflammatory drugs (NSAIDs) in rats. METHODS: Male Sprague-Dawley rats were orally treated with indomethacin (100 micromol/kg), diclofenac (60 micromol/kg), piroxicam (150 micromol/kg) or ketoprofen (150 micromol/kg). Thirty minutes before NSAIDs, animals were orally treated with lansoprazole 18 or 90 micromol/kg. Four hours after the end of treatments, the following parameters were assessed: gastric mucosal PGE2, malondialdehyde (MDA), myeloperoxidase (MPO) or non-proteic sulfhydryl compounds (GSH) levels; reverse transcription-polymerase chain reaction (RT-PCR) of mucosal COX-2 mRNA; gastric acid secretion in pylorus-ligated animals; in vitro effects of lansoprazole (1-300 micromol/L) on the oxidation of low density lipoproteins (LDLs) induced by copper sulphate. RESULTS: All NSAIDs elicited mucosal necrotic lesions which were associated with neutrophil infiltration and reduction of PGE2 levels. Increments of MPO and MDA contents, as well as a decrease in GSH levels were detected in the gastric mucosa of indomethacin- or piroxicam-treated animals. Indomethacin enhanced mucosal cyclooxygenase-2 expression, while not affecting cyclooxygenase-1. At the oral dose of 18 micromol/kg lansoprazole partly counteracted diclofenac-induced mucosal damage, whereas at 90 micromol/kg it markedly prevented injuries evoked by all test NSAIDs. Lansoprazole at 90 micromol/kg reversed also the effects of NSAIDs on MPO, MDA and GSH mucosal contents, without interfering with the decrease in PGE2 levels or indomethacin-induced cyclooxygenase-2 expression. However, both lansoprazole doses markedly inhibited acid secretion in pylorus-ligated rats. Lansoprazole concentration-dependently reduced the oxidation of LDLs in vitro. CONCLUSION: These results suggest that, besides the inhibition of acid secretion, lansoprazole protection against NSAID-induced gastric damage depends on a reduction in mucosal oxidative injury, which is also responsible for an increment of sulfhydryl radical bioavailability. It is also suggested that lansoprazole does not influence the down-regulation of gastric prostaglandin production associated with NSAID treatment.File | Dimensione | Formato | |
---|---|---|---|
BLANDIZZI-WJG[LANSOPRAZOLO-FANS-2005].pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
704.33 kB
Formato
Adobe PDF
|
704.33 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.