A poorly defined negative feedback loop decreases transcription of theL-histidine decarboxylase (HDC) gene. To help understand this regulation, we have studied the effect of HDC protein expression on HDC gene transcription in transfected AGS-B cells. Expression of the rat HDC protein inhibited HDC promoter activity in a dose-dependent fashion. The region of the HDC promoter mediating this inhibitory effect corresponded to a previously defined gastrin and extracellular signal-related kinase (ERK)-1 response element. Overexpression of the HDC protein reduced nuclear factor binding in this region. Experiments employing specific histamine receptor agonists indicated that the inhibitory effect was not dependent on histamine production, and studies with the HDC inhibitor α-fluoromethylhistidine revealed that inhibition was unrelated to enzyme activity. Instead, an enzymatically inactive region at the amino terminal of the HDC enzyme (residues 1–271) was shown to mediate inhibition. Fluorescent chimeras containing this domain were not targeted to the nucleus, arguing against specific inhibition of the HDC transcription machinery. Instead, we found that overexpression of HDC protein decreased ERK protein levels and ERK activity and that the inhibitory effect of HDC protein could be overcome by overexpression of ERK1. These data suggest a novel feedback-inhibitory role for amino terminal sequences of the HDC protein

L-histidine decarboxylase decreases its own transcription through downregulation of ERK activity

COLUCCI, ROCCHINA LUCIA;
2001

Abstract

A poorly defined negative feedback loop decreases transcription of theL-histidine decarboxylase (HDC) gene. To help understand this regulation, we have studied the effect of HDC protein expression on HDC gene transcription in transfected AGS-B cells. Expression of the rat HDC protein inhibited HDC promoter activity in a dose-dependent fashion. The region of the HDC promoter mediating this inhibitory effect corresponded to a previously defined gastrin and extracellular signal-related kinase (ERK)-1 response element. Overexpression of the HDC protein reduced nuclear factor binding in this region. Experiments employing specific histamine receptor agonists indicated that the inhibitory effect was not dependent on histamine production, and studies with the HDC inhibitor α-fluoromethylhistidine revealed that inhibition was unrelated to enzyme activity. Instead, an enzymatically inactive region at the amino terminal of the HDC enzyme (residues 1–271) was shown to mediate inhibition. Fluorescent chimeras containing this domain were not targeted to the nucleus, arguing against specific inhibition of the HDC transcription machinery. Instead, we found that overexpression of HDC protein decreased ERK protein levels and ERK activity and that the inhibitory effect of HDC protein could be overcome by overexpression of ERK1. These data suggest a novel feedback-inhibitory role for amino terminal sequences of the HDC protein
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3166246
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact