A pair of elements a, b in an integral domain R is an idempotent pair if either a(1 − a) ∈ bR, or b(1 − b) ∈ aR. R is said to be a PRINC domain if all the ideals generated by an idempotent pair are principal.We show that in an order R of a Dedekind domain every regular prime ideal can be generated by an idempotent pair; moreover, if R is PRINC, then its integral closure, which is a Dedekind domain, is PRINC, too. Hence, a Dedekind domain is PRINC if and only if it is a PID. Furthermore, we show that the only imaginary quadratic orders ℤ[√−d], d > 0 square-free, that are PRINC and not integrally closed, are for d = 3, 7.

Idempotent pairs and PRINC domains

PERUGINELLI, GIULIO;SALCE, LUIGI;ZANARDO, PAOLO
2016

Abstract

A pair of elements a, b in an integral domain R is an idempotent pair if either a(1 − a) ∈ bR, or b(1 − b) ∈ aR. R is said to be a PRINC domain if all the ideals generated by an idempotent pair are principal.We show that in an order R of a Dedekind domain every regular prime ideal can be generated by an idempotent pair; moreover, if R is PRINC, then its integral closure, which is a Dedekind domain, is PRINC, too. Hence, a Dedekind domain is PRINC if and only if it is a PID. Furthermore, we show that the only imaginary quadratic orders ℤ[√−d], d > 0 square-free, that are PRINC and not integrally closed, are for d = 3, 7.
2016
Multiplicative Ideal Theory and Factorization Theory - Commutative and Non-Commutative Perspectives
978-3-319-38855-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3163337
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact