We describe an algorithm to compute the different factorizations of a given image primitive integer-valued polynomial f(X) = g(X)/d ∈ Q[X], where g ∈ Z[X] and d ∈ N is square-free, assuming that the factorizations of g(X) in Z[X] and d in Z are known. We translate this problem into a combinatorial one.

Factorization of Integer-Valued Polynomials with Square-Free Denominator

PERUGINELLI, GIULIO
2015

Abstract

We describe an algorithm to compute the different factorizations of a given image primitive integer-valued polynomial f(X) = g(X)/d ∈ Q[X], where g ∈ Z[X] and d ∈ N is square-free, assuming that the factorizations of g(X) in Z[X] and d in Z are known. We translate this problem into a combinatorial one.
File in questo prodotto:
File Dimensione Formato  
factintvalsquarefree - frontespizio.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Accesso gratuito
Dimensione 323.86 kB
Formato Adobe PDF
323.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3163328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact