We describe an algorithm to compute the different factorizations of a given image primitive integer-valued polynomial f(X) = g(X)/d ∈ Q[X], where g ∈ Z[X] and d ∈ N is square-free, assuming that the factorizations of g(X) in Z[X] and d in Z are known. We translate this problem into a combinatorial one.
Factorization of Integer-Valued Polynomials with Square-Free Denominator
PERUGINELLI, GIULIO
2015
Abstract
We describe an algorithm to compute the different factorizations of a given image primitive integer-valued polynomial f(X) = g(X)/d ∈ Q[X], where g ∈ Z[X] and d ∈ N is square-free, assuming that the factorizations of g(X) in Z[X] and d in Z are known. We translate this problem into a combinatorial one.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
factintvalsquarefree - frontespizio.pdf
accesso aperto
Tipologia:
Postprint (accepted version)
Licenza:
Accesso gratuito
Dimensione
323.86 kB
Formato
Adobe PDF
|
323.86 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.