One of the most surprising and significant advances in the study of the photosynthetic light- harvesting process is the discovery that the electronic energy transfer (ET) might involve long-lived electronic coherences, also at physiologically relevant conditions. This means that the transfer of energy among different chromophores does not follow the expected classical incoherent hopping mechanism, but that quantum-mechanical laws can steer the migration of energy. The implications of such quantum transport regime, although currently under debate, might have a tremendous impact in our way to think about natural and artificial light-harvesting and suggest new directions for the development of artificial devices for the efficient capture and re-use of solar energy. Central to these discoveries has been the development of new ultrafast spectroscopic techniques, in particular two-dimensional electronic spectroscopy, which is now the primary tool to obtain clear and definitive experimental proof of such effects.

Coherent electronic energy transfer and organic photovoltaics

COLLINI, ELISABETTA
2014

Abstract

One of the most surprising and significant advances in the study of the photosynthetic light- harvesting process is the discovery that the electronic energy transfer (ET) might involve long-lived electronic coherences, also at physiologically relevant conditions. This means that the transfer of energy among different chromophores does not follow the expected classical incoherent hopping mechanism, but that quantum-mechanical laws can steer the migration of energy. The implications of such quantum transport regime, although currently under debate, might have a tremendous impact in our way to think about natural and artificial light-harvesting and suggest new directions for the development of artificial devices for the efficient capture and re-use of solar energy. Central to these discoveries has been the development of new ultrafast spectroscopic techniques, in particular two-dimensional electronic spectroscopy, which is now the primary tool to obtain clear and definitive experimental proof of such effects.
2014
Advances in Science and Technology
6th Forum on New Materials
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3156898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact