Carbon nanotubes are attractive candidates for the development of scaffolds able to support neuronal growth and differentiation thanks to their ability to conduct electrical stimuli, to interface with cells and to mimic the neural environment. We developed a biocompatible composite scaffold, consisting of multi-walled carbon nanotubes dispersed in a poly-L-lactic acid matrix able to support growth and differentiation of human neuronal cells. Moreover, to mimic guidance cues from the neural environment, we also designed synthetic peptides, derived from L1 and LINGO1 proteins. Such peptides could positively modulate neuronal differentiation, which is synergistically improved by the combination of the nanocomposite scaffold and the peptides, thus suggesting a prototype for the development of implants for long-term neuronal growth and differentiation. The study describes the design and preparation of nanocomposite scaffolds with multi-walled carbon nanotubes in a poly-L-lactic acid matrix. This compound used in combination with peptides leads to synergistic effects in supporting neuronal cell growth and differentiation.
Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold
SCAPIN, GIORGIA;SALICE, PATRIZIO;TESCARI, SIMONE;MENNA, ENZO;DE FILIPPIS, VINCENZO;FILIPPINI, FRANCESCO
2015
Abstract
Carbon nanotubes are attractive candidates for the development of scaffolds able to support neuronal growth and differentiation thanks to their ability to conduct electrical stimuli, to interface with cells and to mimic the neural environment. We developed a biocompatible composite scaffold, consisting of multi-walled carbon nanotubes dispersed in a poly-L-lactic acid matrix able to support growth and differentiation of human neuronal cells. Moreover, to mimic guidance cues from the neural environment, we also designed synthetic peptides, derived from L1 and LINGO1 proteins. Such peptides could positively modulate neuronal differentiation, which is synergistically improved by the combination of the nanocomposite scaffold and the peptides, thus suggesting a prototype for the development of implants for long-term neuronal growth and differentiation. The study describes the design and preparation of nanocomposite scaffolds with multi-walled carbon nanotubes in a poly-L-lactic acid matrix. This compound used in combination with peptides leads to synergistic effects in supporting neuronal cell growth and differentiation.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.