A finite group G is coprimely-invariably generated if there exists a set of generators {g1,…,gd} of G with the property that the orders |g1|,…,|gd| are pairwise coprime and that for all elements x1,…,xd in G the set {g1^x1,…,gd^xd} generates G. In the particular case when |g1|,…,|gd| can be chosen to be prime-powers we say that G is prime-power coprimely-invariably generated. We will discuss these properties, proving also that the second one is stronger than the first, but that in the particular case of finite soluble groups they are equivalent.

Invariable generation with elements of coprime prime-power orders

DETOMI, ELOISA MICHELA;LUCCHINI, ANDREA
2015

Abstract

A finite group G is coprimely-invariably generated if there exists a set of generators {g1,…,gd} of G with the property that the orders |g1|,…,|gd| are pairwise coprime and that for all elements x1,…,xd in G the set {g1^x1,…,gd^xd} generates G. In the particular case when |g1|,…,|gd| can be chosen to be prime-powers we say that G is prime-power coprimely-invariably generated. We will discuss these properties, proving also that the second one is stronger than the first, but that in the particular case of finite soluble groups they are equivalent.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3146538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact