This paper proposes a method for fusing data acquired by a ToF camera and a stereo pair based on a model for depth measurement by ToF cameras which accounts also for depth discontinuity artifacts due to the mixed pixel effect. Such model is exploited within both a ML and a MAP-MRF frameworks for ToF and stereo data fusion. The proposed MAP-MRF framework is characterized by site-dependent range values, a rather important feature since it can be used both to improve the accuracy and to decrease the computational complexity of standard MAP-MRF approaches. This paper, in order to optimize the site dependent global cost function characteristic of the proposed MAP-MRF approach, also introduces an extension to Loopy Belief Propagation which can be used in other contexts. Experimental data validate the proposed ToF measurements model and the effectiveness of the proposed fusion techniques.

Probabilistic ToF and Stereo Data Fusion Based on Mixed Pixel Measurement Models

DAL MUTTO, CARLO;ZANUTTIGH, PIETRO;CORTELAZZO, GUIDO MARIA
2015

Abstract

This paper proposes a method for fusing data acquired by a ToF camera and a stereo pair based on a model for depth measurement by ToF cameras which accounts also for depth discontinuity artifacts due to the mixed pixel effect. Such model is exploited within both a ML and a MAP-MRF frameworks for ToF and stereo data fusion. The proposed MAP-MRF framework is characterized by site-dependent range values, a rather important feature since it can be used both to improve the accuracy and to decrease the computational complexity of standard MAP-MRF approaches. This paper, in order to optimize the site dependent global cost function characteristic of the proposed MAP-MRF approach, also introduces an extension to Loopy Belief Propagation which can be used in other contexts. Experimental data validate the proposed ToF measurements model and the effectiveness of the proposed fusion techniques.
File in questo prodotto:
File Dimensione Formato  
paper.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Preprint (submitted version)
Licenza: Accesso gratuito
Dimensione 14.79 MB
Formato Adobe PDF
14.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3146356
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
  • OpenAlex ND
social impact