Slip along low-angle normal faults is a mechanical paradox requiring activation of strain weakening mechanisms. Microstructures present in the slip zones of incipient low-angle normal faults cutting carbonates in the Southern Apennines of Italy show that slip was promoted by two weakening mechanisms producing a reduction of the friction coefficient: (1) high pore fluid pressures; (2) dynamic weakening related to thermal decomposition indicated by decarbonation microstructures and concomitant localized dynamic calcite recrystallization. Furthermore, as a consequence of thermal decomposition, nanoparticles occur as infilling of injection veins, suggesting that powder lubrication processes are active along the slip surface during seismic slip.
Dynamic weakening along incipient low-angle normal faults in pelagic limestones (Southern Apennines, Italy)
SPIESS, RICHARD;
2015
Abstract
Slip along low-angle normal faults is a mechanical paradox requiring activation of strain weakening mechanisms. Microstructures present in the slip zones of incipient low-angle normal faults cutting carbonates in the Southern Apennines of Italy show that slip was promoted by two weakening mechanisms producing a reduction of the friction coefficient: (1) high pore fluid pressures; (2) dynamic weakening related to thermal decomposition indicated by decarbonation microstructures and concomitant localized dynamic calcite recrystallization. Furthermore, as a consequence of thermal decomposition, nanoparticles occur as infilling of injection veins, suggesting that powder lubrication processes are active along the slip surface during seismic slip.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.