The advent of power devices based on Wide BandGap (WBG) semiconductor materials, like the Silicon Carbide (SiC) MOSFETs, can improve the overall performance of the power converter systems, by reducing the conversion losses and enabling operation at higher switching frequency. This paper analyzes the range extension of electric vehicles (EVs) ensuing from the adoption of SiC devices for the traction inverter. As a case study, a compact-class electric car equipped with a Silicon (Si) IGBT traction inverter is considered. After introducing the driving cycle used to evaluate the range, the time graphs of currents and voltages applied by the inverter to the traction motor along the driving cycle are calculated. A loss model for Si and SiC devices is then formulated, and the losses of the Si IGBT inverter over the driving cycle are found and compared to the losses obtainable with a SiC MOSFET inverter. For the case study, the analysis shows that a SiC MOSFET inverter can extend the electric car range up to 5%

Impact of SiC MOSFET traction inverters on compact-class electric car range

KUMAR, KUNDAN;BERTOLUZZO, MANUELE;BUJA, GIUSEPPE
2014

Abstract

The advent of power devices based on Wide BandGap (WBG) semiconductor materials, like the Silicon Carbide (SiC) MOSFETs, can improve the overall performance of the power converter systems, by reducing the conversion losses and enabling operation at higher switching frequency. This paper analyzes the range extension of electric vehicles (EVs) ensuing from the adoption of SiC devices for the traction inverter. As a case study, a compact-class electric car equipped with a Silicon (Si) IGBT traction inverter is considered. After introducing the driving cycle used to evaluate the range, the time graphs of currents and voltages applied by the inverter to the traction motor along the driving cycle are calculated. A loss model for Si and SiC devices is then formulated, and the losses of the Si IGBT inverter over the driving cycle are found and compared to the losses obtainable with a SiC MOSFET inverter. For the case study, the analysis shows that a SiC MOSFET inverter can extend the electric car range up to 5%
2014
Proceedings of International conference on power electronics, drives and energi system (PEDES)
International conference on power electronics, drives and energi system (PEDES)
9781479963737
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3146201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact