We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of boundary mass concentration. We discuss the asymptotic behavior of the Neumann eigenvalues in a ball and we deduce that the Steklov eigenvalues minimize the Neumann eigenvalues. Moreover, we study the dependence of the eigenvalues of the Steklov problem upon perturbation of the mass density and show that the Steklov eigenvalues violates a maximum principle in spectral optimization problems.

Viewing the Steklov Eigenvalues of the Laplace Operator as Critical Neumann Eigenvalues

LAMBERTI, PIER DOMENICO;PROVENZANO, LUIGI
2015

Abstract

We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of boundary mass concentration. We discuss the asymptotic behavior of the Neumann eigenvalues in a ball and we deduce that the Steklov eigenvalues minimize the Neumann eigenvalues. Moreover, we study the dependence of the eigenvalues of the Steklov problem upon perturbation of the mass density and show that the Steklov eigenvalues violates a maximum principle in spectral optimization problems.
2015
Trends in Mathematics, Current Trends in Analysis and Its Applications
9th ISAAC Congress, Kraków 2013
9783319125763
9783319125770
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3143335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact