he paper establishes a solution to the Monge problem in ℝ for a possibly asymmetric norm cost function and absolutely continuous initial measures, under the assumption that the unit ball is strictly convex-but not necessarily differentiable nor uniformly convex. The proof follows the strategy initially proposed by Sudakov in 1976, found to be incomplete in 2000; the missing step is fixed in the above case adapting a disintegration technique introduced for a variational problem. By strict convexity, mass moves along rays, and we also investigate the divergence of the vector field of rays.

A proof of Sudakov theorem with strictly convex norms

CARAVENNA, LAURA
2011

Abstract

he paper establishes a solution to the Monge problem in ℝ for a possibly asymmetric norm cost function and absolutely continuous initial measures, under the assumption that the unit ball is strictly convex-but not necessarily differentiable nor uniformly convex. The proof follows the strategy initially proposed by Sudakov in 1976, found to be incomplete in 2000; the missing step is fixed in the above case adapting a disintegration technique introduced for a variational problem. By strict convexity, mass moves along rays, and we also investigate the divergence of the vector field of rays.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3106701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 21
  • OpenAlex ND
social impact