We consider stochastic differential games with N players, linear-Gaussian dynamics in arbitrary state-space dimension, and long-time-average cost with quadratic running cost. Admissible controls are feedbacks for which the system is ergodic. We first study the existence of affine Nash equilibria by means of an associated system of N Hamilton-Jacobi-Bellman and N Kolmogorov-Fokker-Planck partial differential equations. We give necessary and sufficient conditions for the existence and uniqueness of quadratic-Gaussian solutions in terms of the solvability of suitable algebraic Riccati and Sylvester equations. Under a symmetry condition on the running costs and for nearly identical players we study the large population limit, N tending to infinity, and find a unique quadratic-Gaussian solution of the pair of Mean Field Game HJB-KFP equations. Examples of explicit solutions are given, in particular for consensus problems.

Linear-Quadratic N-person and Mean-Field Games with Ergodic Cost

BARDI, MARTINO;
2014

Abstract

We consider stochastic differential games with N players, linear-Gaussian dynamics in arbitrary state-space dimension, and long-time-average cost with quadratic running cost. Admissible controls are feedbacks for which the system is ergodic. We first study the existence of affine Nash equilibria by means of an associated system of N Hamilton-Jacobi-Bellman and N Kolmogorov-Fokker-Planck partial differential equations. We give necessary and sufficient conditions for the existence and uniqueness of quadratic-Gaussian solutions in terms of the solvability of suitable algebraic Riccati and Sylvester equations. Under a symmetry condition on the running costs and for nearly identical players we study the large population limit, N tending to infinity, and find a unique quadratic-Gaussian solution of the pair of Mean Field Game HJB-KFP equations. Examples of explicit solutions are given, in particular for consensus problems.
File in questo prodotto:
File Dimensione Formato  
Bardi_Priuli_sicon_copyright.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 335.02 kB
Formato Adobe PDF
335.02 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3067901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 62
  • OpenAlex ND
social impact