Neurodegenerative conditions commonly involve loss of neuronal connectivity, synaptic dysfunction with excessive pruning, and ionic imbalances. These often serve as a prelude to cell death either through the activation of apoptotic or necrotic death routines or excess autophagy. In many instances, a local or generalized Ca2+ deregulation is involved in signaling or executing cell death. We have recently shown that in brain ischemia, and during excitotoxicity triggered by excess glutamate, the irreversible Ca2+ deregulation leading to necrosis is due to calpain-mediated modulation of the plasma membrane Na+/Ca2+ exchanger (NCX). Here we show that the NCX can also be cleaved by caspases in neurons undergoing apoptosis, which suggests that cleavage of the main Ca2+ extrusion pathway is a lethal event in multiple forms of cell death.
The Plasma Membrane Na+/Ca2+ Exchanger Is Cleaved by Distinct Protease Families in Neuronal Cell Death
ZIVIANI, ELENA;
2007
Abstract
Neurodegenerative conditions commonly involve loss of neuronal connectivity, synaptic dysfunction with excessive pruning, and ionic imbalances. These often serve as a prelude to cell death either through the activation of apoptotic or necrotic death routines or excess autophagy. In many instances, a local or generalized Ca2+ deregulation is involved in signaling or executing cell death. We have recently shown that in brain ischemia, and during excitotoxicity triggered by excess glutamate, the irreversible Ca2+ deregulation leading to necrosis is due to calpain-mediated modulation of the plasma membrane Na+/Ca2+ exchanger (NCX). Here we show that the NCX can also be cleaved by caspases in neurons undergoing apoptosis, which suggests that cleavage of the main Ca2+ extrusion pathway is a lethal event in multiple forms of cell death.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.