Liquid flow in microchannels is completely laminar and uniaxial, with a very low Reynolds number regime and long mixing lengths. To increase fluid mixing and solubility of reactants, as well as to reduce reaction time, complex three-dimensional networks inducing chaotic advection have to be designed. Alternatively, turbulence in the liquid can be generated by active mixing methods (magnetic, acoustic waves, etc.) or adding small quantities of elastic materials to the working liquid. Here, polyelectrolyte multilayer capsules embodying a catalytic polyoxometalate complex have been suspended in an aqueous solution and used to create elastic turbulence and to propel fluids inside microchannels as an alternative to viscoelastic polymers. The overall effect is enhanced and controlled by feeding the polyoxometalate-modified capsules with hydrogen peroxide, H2O2, thus triggering an on-demand propulsion due to oxygen evolution resulting from H2O2 decomposition. The quantification of the process is done by analysing some structural parameters of motion such as speed, pressure, viscosity, and Reynolds and Weissenberg numbers, directly obtained from the capillary dynamics of the aqueous mixtures with different concentrations of H2O2. The increases in fluid speed as well as the capsule-induced turbulence effects are proportional to the H2O2 added and therefore dependent on the kinetics of H2O2 dismutation.

Catalytic oxygen production mediated by smart capsules to modulate elastic turbulence under a laminar flow regime

CARRARO, MAURO;BONCHIO, MARCELLA;
2014

Abstract

Liquid flow in microchannels is completely laminar and uniaxial, with a very low Reynolds number regime and long mixing lengths. To increase fluid mixing and solubility of reactants, as well as to reduce reaction time, complex three-dimensional networks inducing chaotic advection have to be designed. Alternatively, turbulence in the liquid can be generated by active mixing methods (magnetic, acoustic waves, etc.) or adding small quantities of elastic materials to the working liquid. Here, polyelectrolyte multilayer capsules embodying a catalytic polyoxometalate complex have been suspended in an aqueous solution and used to create elastic turbulence and to propel fluids inside microchannels as an alternative to viscoelastic polymers. The overall effect is enhanced and controlled by feeding the polyoxometalate-modified capsules with hydrogen peroxide, H2O2, thus triggering an on-demand propulsion due to oxygen evolution resulting from H2O2 decomposition. The quantification of the process is done by analysing some structural parameters of motion such as speed, pressure, viscosity, and Reynolds and Weissenberg numbers, directly obtained from the capillary dynamics of the aqueous mixtures with different concentrations of H2O2. The increases in fluid speed as well as the capsule-induced turbulence effects are proportional to the H2O2 added and therefore dependent on the kinetics of H2O2 dismutation.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3015501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
  • OpenAlex ND
social impact