We recently reported that the pineal hormone melatonin protected neuronal cultures from excitotoxicity mediated via kainate-sensitive glutamate receptors and from oxidative stress-induced apoptosis. It has been shown that in rats, a systemic administration of kainate induces apoptotic cell death in various brain regions. In this study, we assayed the extent of brain injury after intraperitoneal (i.p.) administration of 10 mg/kg kainate to rats, using the quantitative TUNEL technique and Nissl staining. We examined the role of melatonin on kainate-induced brain injury by (a) injecting melatonin (4 × 2.5 mg/kg i.p.) prior to and after kainate injection and (b) injecting kainate at the time of low circulating melatonin levels (day/light), and high melatonin levels (night/dark). The extent of kainate-triggered DNA damage and the loss of Nissl staining were lower in animals treated with melatonin, or when kainate was injected at night, i.e. in the presence of high endogenous levels of melatonin. Our results suggest that both the pharmacological use of melatonin and the circadian secretion of endogenous melatonin during the night may reduce the extent of excitotoxic brain injury. Further studies are needed to fully characterize the relevance of our findings for the treatment of progressive neurodegenerative processes which involve excitotoxicity and apoptotic neuronal death.

In vivo protection against kainate-induced apoptosis by the pineal hormone melatonin: effect of exogenous melatonin and circadian rhythm.

FRANCESCHINI, DAVIDE;GIUSTI, PIETRO
1996

Abstract

We recently reported that the pineal hormone melatonin protected neuronal cultures from excitotoxicity mediated via kainate-sensitive glutamate receptors and from oxidative stress-induced apoptosis. It has been shown that in rats, a systemic administration of kainate induces apoptotic cell death in various brain regions. In this study, we assayed the extent of brain injury after intraperitoneal (i.p.) administration of 10 mg/kg kainate to rats, using the quantitative TUNEL technique and Nissl staining. We examined the role of melatonin on kainate-induced brain injury by (a) injecting melatonin (4 × 2.5 mg/kg i.p.) prior to and after kainate injection and (b) injecting kainate at the time of low circulating melatonin levels (day/light), and high melatonin levels (night/dark). The extent of kainate-triggered DNA damage and the loss of Nissl staining were lower in animals treated with melatonin, or when kainate was injected at night, i.e. in the presence of high endogenous levels of melatonin. Our results suggest that both the pharmacological use of melatonin and the circadian secretion of endogenous melatonin during the night may reduce the extent of excitotoxic brain injury. Further studies are needed to fully characterize the relevance of our findings for the treatment of progressive neurodegenerative processes which involve excitotoxicity and apoptotic neuronal death.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2989300
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact