A (holomorphic) quantization of a complex contact manifold is a filtered algebroid stack which is locally equivalent to the ring E of microdifferential operators and which has trivial graded. The existence of a canonical quantization has been proved by Kashiwara. In this paper we consider the classification problem, showing that the above quantizations are classified by the first cohomology group with values in a certain sheaf of homogeneous forms. Secondly, we consider the problem of existence and classification for quantizations given by algebras.
On quantizations of complex contact manifolds
POLESELLO, PIETRO
2015
Abstract
A (holomorphic) quantization of a complex contact manifold is a filtered algebroid stack which is locally equivalent to the ring E of microdifferential operators and which has trivial graded. The existence of a canonical quantization has been proved by Kashiwara. In this paper we consider the classification problem, showing that the above quantizations are classified by the first cohomology group with values in a certain sheaf of homogeneous forms. Secondly, we consider the problem of existence and classification for quantizations given by algebras.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.