Investigating the interactions between the physical environment and early life history is crucial to understand the mechanisms that shape the genetic structure of marine populations. Here, we assessed the genetic differentiation in a species with larval dispersal, the Mediterranean shore crab (Carcinus aestuarii) in the Adriatic Sea (central Mediterranean), and we investigated the role of oceanic circulation in shaping population structure. To this end, we screened 11 polymorphic microsatellite loci from 431 individuals collected at eight different sites. We found a weak, yet significant, genetic structure into three major clusters: a northern Adriatic group, a central Adriatic group, and one group including samples from southern Adriatic and Ionian seas. Genetic analyses were compared, under a seascape genetics approach, with estimates of potential larval connectivity obtained with a coupled physical-biological model that integrates a water circulation model and a description of biological traits affecting dispersal. The cross-validation of the results of the two approaches supported the view that genetic differentiation reflects an oceanographic subdivision of the Adriatic Sea into three sub-basins, with circulation patterns allowing the exchange of larvae through permanent connections linking north Adriatic sites and ephemeral connections like those linking the central Adriatic with northern and southern locations.

Matching oceanography and genetics at the basin scale. Seascape connectivity of the Mediterranean shore crab in the Adriatic Sea

MARINO, ILARIA ANNA MARIA;ZANE, LORENZO
;
2014

Abstract

Investigating the interactions between the physical environment and early life history is crucial to understand the mechanisms that shape the genetic structure of marine populations. Here, we assessed the genetic differentiation in a species with larval dispersal, the Mediterranean shore crab (Carcinus aestuarii) in the Adriatic Sea (central Mediterranean), and we investigated the role of oceanic circulation in shaping population structure. To this end, we screened 11 polymorphic microsatellite loci from 431 individuals collected at eight different sites. We found a weak, yet significant, genetic structure into three major clusters: a northern Adriatic group, a central Adriatic group, and one group including samples from southern Adriatic and Ionian seas. Genetic analyses were compared, under a seascape genetics approach, with estimates of potential larval connectivity obtained with a coupled physical-biological model that integrates a water circulation model and a description of biological traits affecting dispersal. The cross-validation of the results of the two approaches supported the view that genetic differentiation reflects an oceanographic subdivision of the Adriatic Sea into three sub-basins, with circulation patterns allowing the exchange of larvae through permanent connections linking north Adriatic sites and ephemeral connections like those linking the central Adriatic with northern and southern locations.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2957299
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
  • OpenAlex ND
social impact