Lossy temporal compression is key for energy-constrained wireless sensor networks (WSNs), where the imperfect reconstruction of the signal is often acceptable at the data collector, subject to some maximum error tolerance. In this article, we evaluate a number of selected lossy compression methods from the literature and extensively analyze their performance in terms of compression efficiency, computational complexity, and energy consumption. Specifically, we first carry out a performance evaluation of existing and new compression schemes, considering linear, autoregressive, FFT-/DCT- and wavelet-based models, by looking at their performance as a function of relevant signal statistics. Second, we obtain formulas through numerical fittings to gauge their overall energy consumption and signal representation accuracy. Third, we evaluate the benefits that lossy compression methods bring about in interference-limited multihop networks, where the channel access is a source of inefficiency due to collisions and transmission scheduling. Our results reveal that the DCT-based schemes are the best option in terms of compression efficiency but are inefficient in terms of energy consumption. Instead, linear methods lead to substantial savings in terms of energy expenditure by, at the same time, leading to satisfactory compression ratios, reduced network delay, and increased reliability performance.
On the Performance of Lossy Compression Schemes for Energy Constrained Sensor Networking
ZORDAN, DAVIDE;ROSSI, MICHELE
2014
Abstract
Lossy temporal compression is key for energy-constrained wireless sensor networks (WSNs), where the imperfect reconstruction of the signal is often acceptable at the data collector, subject to some maximum error tolerance. In this article, we evaluate a number of selected lossy compression methods from the literature and extensively analyze their performance in terms of compression efficiency, computational complexity, and energy consumption. Specifically, we first carry out a performance evaluation of existing and new compression schemes, considering linear, autoregressive, FFT-/DCT- and wavelet-based models, by looking at their performance as a function of relevant signal statistics. Second, we obtain formulas through numerical fittings to gauge their overall energy consumption and signal representation accuracy. Third, we evaluate the benefits that lossy compression methods bring about in interference-limited multihop networks, where the channel access is a source of inefficiency due to collisions and transmission scheduling. Our results reveal that the DCT-based schemes are the best option in terms of compression efficiency but are inefficient in terms of energy consumption. Instead, linear methods lead to substantial savings in terms of energy expenditure by, at the same time, leading to satisfactory compression ratios, reduced network delay, and increased reliability performance.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.