The design of a permanent Step mold for the evaluation of the mechanical properties of light alloys has been reviewed. An optimized Step die with a different runner and gating systems is proposed to minimize the amount of casting defects. Numerical simulations have been performed to study the filling and solidification behavior of an AM60B alloy to predict the turbulence of the melt and the microshrinkage formation. The results reveal how a correct design of the trap in the runners prevents the backwave of molten metal, which could eventually reverse out and enter the die cavity. The tapered runner in the optimized die configuration gently leads the molten metal to the ingate, avoiding turbulence and producing a balanced die cavity filling. The connection between the runner system and the die cavity by means of a fan ingate produces a laminar filling in contrast with a finger-type ingate. Solidification defects such as shrinkage induced microporosity, numerically predicted through a dimensionless version of the Niyama criterion, are considerably reduced in the optimized permanent Step mold.

Optimization of a Permanent Step Mold Design for Mg Alloy Castings

TIMELLI, GIULIO;CAPUZZI, STEFANO;BONOLLO, FRANCO
2014

Abstract

The design of a permanent Step mold for the evaluation of the mechanical properties of light alloys has been reviewed. An optimized Step die with a different runner and gating systems is proposed to minimize the amount of casting defects. Numerical simulations have been performed to study the filling and solidification behavior of an AM60B alloy to predict the turbulence of the melt and the microshrinkage formation. The results reveal how a correct design of the trap in the runners prevents the backwave of molten metal, which could eventually reverse out and enter the die cavity. The tapered runner in the optimized die configuration gently leads the molten metal to the ingate, avoiding turbulence and producing a balanced die cavity filling. The connection between the runner system and the die cavity by means of a fan ingate produces a laminar filling in contrast with a finger-type ingate. Solidification defects such as shrinkage induced microporosity, numerically predicted through a dimensionless version of the Niyama criterion, are considerably reduced in the optimized permanent Step mold.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2945499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact