We construct norming meshes with cardinality O(nˆs), s= 3, for polynomials of total degree at most n, on the closure of bounded planar Lipschitz domains. Such cardinality is intermediate between optimality (s= 2), recently obtained by Kroo on multidimensional Cˆ2 starlike domains, and that arising from a general construction on Markov compact sets due to Calvi and Levenberg (s= 4).

Suboptimal Polynomial Meshes on Planar Lipschitz Domains

PIAZZON, FEDERICO;VIANELLO, MARCO
2014

Abstract

We construct norming meshes with cardinality O(nˆs), s= 3, for polynomials of total degree at most n, on the closure of bounded planar Lipschitz domains. Such cardinality is intermediate between optimality (s= 2), recently obtained by Kroo on multidimensional Cˆ2 starlike domains, and that arising from a general construction on Markov compact sets due to Calvi and Levenberg (s= 4).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2925300
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact