In this article, we investigate the relationship between the minimum number of proper subgroups of GL(n, q) whose union is the whole GL(n, q) and the maximum number of elements that pairwise generate GL(n, q). We show that the minimum number of proper subrings of M_n(q) whose union is the whole M_n(q) is exactly the maximum number of elements that pairwise generate M_n(q).

Sets of Elements that Pairwise Generate a Matrix Ring

CRESTANI, ELEONORA
2012

Abstract

In this article, we investigate the relationship between the minimum number of proper subgroups of GL(n, q) whose union is the whole GL(n, q) and the maximum number of elements that pairwise generate GL(n, q). We show that the minimum number of proper subrings of M_n(q) whose union is the whole M_n(q) is exactly the maximum number of elements that pairwise generate M_n(q).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2836685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact