We consider eigenvalue problems for general elliptic operators of arbitrary order subject to homogeneous boundary conditions on open subsets of the Euclidean N-dimensional space. We prove stability results for the dependence of the eigenvalues upon variation of the mass density and we prove a maximum principle for extremum problems related to mass density perturbations which preserve the total mass.
A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations
LAMBERTI, PIER DOMENICO;PROVENZANO, LUIGI
2013
Abstract
We consider eigenvalue problems for general elliptic operators of arbitrary order subject to homogeneous boundary conditions on open subsets of the Euclidean N-dimensional space. We prove stability results for the dependence of the eigenvalues upon variation of the mass density and we prove a maximum principle for extremum problems related to mass density perturbations which preserve the total mass.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.