We consider eigenvalue problems for general elliptic operators of arbitrary order subject to homogeneous boundary conditions on open subsets of the Euclidean N-dimensional space. We prove stability results for the dependence of the eigenvalues upon variation of the mass density and we prove a maximum principle for extremum problems related to mass density perturbations which preserve the total mass.

A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations

LAMBERTI, PIER DOMENICO;PROVENZANO, LUIGI
2013

Abstract

We consider eigenvalue problems for general elliptic operators of arbitrary order subject to homogeneous boundary conditions on open subsets of the Euclidean N-dimensional space. We prove stability results for the dependence of the eigenvalues upon variation of the mass density and we prove a maximum principle for extremum problems related to mass density perturbations which preserve the total mass.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2835734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact