Recent findings have unambiguously demonstrated that DNA G-rich sequences can adopt a G-quadruplex folding in living cells, thus further validating them as crucial targets for anticancer therapy. Herein, to identify new potent G4 binders as antitumor drug candidates, we have targeted a 24-nt G4-forming telomeric sequence employing a receptor-based virtual screening approach. Among the best candidates, in vitro binding experiments allowed identification of three novel G4 ligands. Among them, the best compound features an unprecedented binding selectivity for the human telomeric DNA G-quadruplex with no detectable binding for other G4-forming sequences present at different genomic sites. This behavior correlates with the detected ability to generate DNA damage response in tumor cells at the telomeric level and efficient antiproliferative effect on different tumor cell lines at low micromolar concentrations.

Exploring the chemical space of G-quadruplex binders: discovery of a novel chemotype targeting the human telomeric sequence

SISSI, CLAUDIA;
2013

Abstract

Recent findings have unambiguously demonstrated that DNA G-rich sequences can adopt a G-quadruplex folding in living cells, thus further validating them as crucial targets for anticancer therapy. Herein, to identify new potent G4 binders as antitumor drug candidates, we have targeted a 24-nt G4-forming telomeric sequence employing a receptor-based virtual screening approach. Among the best candidates, in vitro binding experiments allowed identification of three novel G4 ligands. Among them, the best compound features an unprecedented binding selectivity for the human telomeric DNA G-quadruplex with no detectable binding for other G4-forming sequences present at different genomic sites. This behavior correlates with the detected ability to generate DNA damage response in tumor cells at the telomeric level and efficient antiproliferative effect on different tumor cell lines at low micromolar concentrations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2835704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 48
  • OpenAlex ND
social impact