Higher-order asymptotic arguments for a scalar parameter of interest have been widely investigated for Bayesian inference. In this paper the theory of asymptotic expansions is discussed for a vector parameter of interest. A modified loglikelihood ratio is suggested, which can be used to derive approximate Bayesian credible sets with accurate frequentist coverage. Three examples are illustrated.

A note on approximate Bayesian credible sets based on modified loglikelihood ratios

VENTURA, LAURA;RULI, ERLIS;
2013

Abstract

Higher-order asymptotic arguments for a scalar parameter of interest have been widely investigated for Bayesian inference. In this paper the theory of asymptotic expansions is discussed for a vector parameter of interest. A modified loglikelihood ratio is suggested, which can be used to derive approximate Bayesian credible sets with accurate frequentist coverage. Three examples are illustrated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2834303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact