Higher-order asymptotic arguments for a scalar parameter of interest have been widely investigated for Bayesian inference. In this paper the theory of asymptotic expansions is discussed for a vector parameter of interest. A modified loglikelihood ratio is suggested, which can be used to derive approximate Bayesian credible sets with accurate frequentist coverage. Three examples are illustrated.
A note on approximate Bayesian credible sets based on modified loglikelihood ratios
VENTURA, LAURA;RULI, ERLIS;
2013
Abstract
Higher-order asymptotic arguments for a scalar parameter of interest have been widely investigated for Bayesian inference. In this paper the theory of asymptotic expansions is discussed for a vector parameter of interest. A modified loglikelihood ratio is suggested, which can be used to derive approximate Bayesian credible sets with accurate frequentist coverage. Three examples are illustrated.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.