Diagnostic approaches based on multimodal imaging are needed for accurate selection of the therapeutic regimens in several diseases, although the dose of administered contrast drugs must be reduced to minimize side effects. Therefore, large efforts are deployed in the development of multimodal contrast agents (MCAs) that permit the complementary visualization of the same diseased area with different sensitivity and different spatial resolution by applying multiple diagnostic techniques. Ideally, MCAs should also allow imaging of diseased tissues with high spatial resolution during surgical interventions. Here a new system based on multifunctional Au-Fe alloy nanoparticles designed to satisfy the main requirements of an ideal MCA is reported and their biocompatibility and imaging capability are described. The MCAs show easy and versatile surface conjugation with thiolated molecules, magnetic resonance imaging (MRI) and computed X-ray tomography (CT) signals for anatomical and physiological information (i.e., diagnostic and prognostic imaging), large Raman signals amplified by surface enhanced Raman scattering (SERS) for high sensitivity and high resolution intrasurgical imaging, biocompatibility, exploitability for in vivo use and capability of selective accumulation in tumors by enhanced permeability and retention effect. Taken together, these results show that Au-Fe nanoalloys are excellent candidates as multimodal MRI-CT-SERS imaging agents. Au-Fe alloy nanoparticles provide exceptional benefits for multimodal imaging: simple synthesis, easy conjugation with thiolated molecules, MRI and CT signals for anatomical investigation, optical Raman signals amplified by the SERS effect for high-sensitivity, high-resolution intrasurgical imaging, biocompatibility, exploitability for in vivo use, and accumulation in tumors by the EPR effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Magneto-Plasmonic Au-Fe Alloy Nanoparticles Designed for Multimodal SERS-MRI-CT Imaging

AMENDOLA, VINCENZO;SCARAMUZZA, STEFANO;LITTI, LUCIO;MENEGHETTI, MORENO;ROSATO, ANTONIO;Giulio Fracasso;
2014

Abstract

Diagnostic approaches based on multimodal imaging are needed for accurate selection of the therapeutic regimens in several diseases, although the dose of administered contrast drugs must be reduced to minimize side effects. Therefore, large efforts are deployed in the development of multimodal contrast agents (MCAs) that permit the complementary visualization of the same diseased area with different sensitivity and different spatial resolution by applying multiple diagnostic techniques. Ideally, MCAs should also allow imaging of diseased tissues with high spatial resolution during surgical interventions. Here a new system based on multifunctional Au-Fe alloy nanoparticles designed to satisfy the main requirements of an ideal MCA is reported and their biocompatibility and imaging capability are described. The MCAs show easy and versatile surface conjugation with thiolated molecules, magnetic resonance imaging (MRI) and computed X-ray tomography (CT) signals for anatomical and physiological information (i.e., diagnostic and prognostic imaging), large Raman signals amplified by surface enhanced Raman scattering (SERS) for high sensitivity and high resolution intrasurgical imaging, biocompatibility, exploitability for in vivo use and capability of selective accumulation in tumors by enhanced permeability and retention effect. Taken together, these results show that Au-Fe nanoalloys are excellent candidates as multimodal MRI-CT-SERS imaging agents. Au-Fe alloy nanoparticles provide exceptional benefits for multimodal imaging: simple synthesis, easy conjugation with thiolated molecules, MRI and CT signals for anatomical investigation, optical Raman signals amplified by the SERS effect for high-sensitivity, high-resolution intrasurgical imaging, biocompatibility, exploitability for in vivo use, and accumulation in tumors by the EPR effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2815888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 161
  • ???jsp.display-item.citation.isi??? 145
social impact