We characterize and discuss the identifiability condition for quantum process tomography, as well as the minimal experimental resources that ensure a unique solution in the estimation of quantum channels, with both direct and convex optimization methods. A convenient parametrization of the constrained set is used to develop a globally converging Newton-type algorithm that ensures a physically admissible solution to the problem. Numerical simulation is provided to support the results and indicate that the minimal experimental setting is sufficient to guarantee good estimates.
Minimal resources identifiability and estimation of quantum channels
ZORZI, MATTIA;TICOZZI, FRANCESCO;FERRANTE, AUGUSTO
2014
Abstract
We characterize and discuss the identifiability condition for quantum process tomography, as well as the minimal experimental resources that ensure a unique solution in the estimation of quantum channels, with both direct and convex optimization methods. A convenient parametrization of the constrained set is used to develop a globally converging Newton-type algorithm that ensures a physically admissible solution to the problem. Numerical simulation is provided to support the results and indicate that the minimal experimental setting is sufficient to guarantee good estimates.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.