Motivated by the fact that two-component confined fermionic gases in Bardeen-Cooper-Schrieffer-Bose-Einstein condensate (BCS-BEC) crossover can be described through an hydrodynamical approach, we study these systems - both in the cigar-shaped configuration and in the disc-shaped one - by using a polytropic Lagrangian density. We start from the Popov Lagrangian density and obtain, after a dimensional reduction process, the equations that control the dynamics of such systems. By solving these equations we study the sound velocity as a function of the density by analyzing how the dimensionality affects this velocity.
Superfluid hydrodynamics of polytropic gases: dimensional reduction and sound velocity
MAZZARELLA, GIOVANNI;SALASNICH, LUCA
2014
Abstract
Motivated by the fact that two-component confined fermionic gases in Bardeen-Cooper-Schrieffer-Bose-Einstein condensate (BCS-BEC) crossover can be described through an hydrodynamical approach, we study these systems - both in the cigar-shaped configuration and in the disc-shaped one - by using a polytropic Lagrangian density. We start from the Popov Lagrangian density and obtain, after a dimensional reduction process, the equations that control the dynamics of such systems. By solving these equations we study the sound velocity as a function of the density by analyzing how the dimensionality affects this velocity.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.