We discuss whether finiteness properties of a profinite group G can be deduced from the coefficients of the probabilistic zeta function P_G(s). In particular we prove that if P_G(s) is rational and all but finitely many non abelian composition factors of G are isomorphic to PSL(2,p) for some prime p, then G contains only finitely many maximal subgroups.

A finiteness condition on the coefficients of the probabilistic zeta function

LUCCHINI, ANDREA
2013

Abstract

We discuss whether finiteness properties of a profinite group G can be deduced from the coefficients of the probabilistic zeta function P_G(s). In particular we prove that if P_G(s) is rational and all but finitely many non abelian composition factors of G are isomorphic to PSL(2,p) for some prime p, then G contains only finitely many maximal subgroups.
File in questo prodotto:
File Dimensione Formato  
IJGT_2013 Spring_Vol 2_Issue 1_Pages 167-174.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 291.54 kB
Formato Adobe PDF
291.54 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2802684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact