We discuss whether finiteness properties of a profinite group G can be deduced from the coefficients of the probabilistic zeta function P_G(s). In particular we prove that if P_G(s) is rational and all but finitely many non abelian composition factors of G are isomorphic to PSL(2,p) for some prime p, then G contains only finitely many maximal subgroups.
A finiteness condition on the coefficients of the probabilistic zeta function
LUCCHINI, ANDREA
2013
Abstract
We discuss whether finiteness properties of a profinite group G can be deduced from the coefficients of the probabilistic zeta function P_G(s). In particular we prove that if P_G(s) is rational and all but finitely many non abelian composition factors of G are isomorphic to PSL(2,p) for some prime p, then G contains only finitely many maximal subgroups.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IJGT_2013 Spring_Vol 2_Issue 1_Pages 167-174.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
291.54 kB
Formato
Adobe PDF
|
291.54 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.