Connexin hemichannels are regulated by several gating mechanisms, some of which depend critically on the extracellular Ca2+ concentration ([Ca2+]e). It is well established that hemichannel activity is inhibited at normal (1 mM) [Ca2+]e, whereas lowering [Ca2+]e to micromolar levels fosters hemichannel opening. Atomic force microscopy imaging shows significant and reversible changes of pore diameter at the extracellular mouth of Cx26 hemichannels exposed to different [Ca2+]e, however, the underlying molecular mechanisms are not fully elucidated. Analysis of the crystal structure of connexin 26 (Cx26) gap junction channels, corroborated by molecular dynamics (MD) simulations, suggests that several negatively charged amino acids create a favorable environment for low-affinity Ca2+ binding within the extracellular vestibule of the Cx26 hemichannel. In particular a highly conserved glutammic acid, found in position 47 in most connexins, is thought to undergo post translational gamma carboxylation (cGlu47), and is thus likely to play an important role in Ca2+ coordination. cGlu47 may also form salt bridges with two conserved arginines (Arg75 and Arg184 in Cx26), which are considered important in stabilizing the structure of the extracellular region. Using a combination of quantum chemistry methods, we analyzed the interaction between cGlu47, Arg75 and Arg184 in a Cx26 hemichannel model both in the absence and in the presence of Ca2+. We show that Ca2+ imparts significant local structural changes and speculate that these modifications may alter the structure of the extracellular loops in Cx26, and may thus account for the mechanism of hemichannel closure in the presence of mM [Ca2+]e.

Role of gamma carboxylated Glu47 in connexin 26 hemichannel regulation by extracellular Ca2+: Insight from a local quantum chemistry study

ZONTA, FRANCESCO;MAMMANO, FABIO;TORSELLO, MAURO;FORTUNATI, NICOLA;ORIAN, LAURA;POLIMENO, ANTONINO
2014

Abstract

Connexin hemichannels are regulated by several gating mechanisms, some of which depend critically on the extracellular Ca2+ concentration ([Ca2+]e). It is well established that hemichannel activity is inhibited at normal (1 mM) [Ca2+]e, whereas lowering [Ca2+]e to micromolar levels fosters hemichannel opening. Atomic force microscopy imaging shows significant and reversible changes of pore diameter at the extracellular mouth of Cx26 hemichannels exposed to different [Ca2+]e, however, the underlying molecular mechanisms are not fully elucidated. Analysis of the crystal structure of connexin 26 (Cx26) gap junction channels, corroborated by molecular dynamics (MD) simulations, suggests that several negatively charged amino acids create a favorable environment for low-affinity Ca2+ binding within the extracellular vestibule of the Cx26 hemichannel. In particular a highly conserved glutammic acid, found in position 47 in most connexins, is thought to undergo post translational gamma carboxylation (cGlu47), and is thus likely to play an important role in Ca2+ coordination. cGlu47 may also form salt bridges with two conserved arginines (Arg75 and Arg184 in Cx26), which are considered important in stabilizing the structure of the extracellular region. Using a combination of quantum chemistry methods, we analyzed the interaction between cGlu47, Arg75 and Arg184 in a Cx26 hemichannel model both in the absence and in the presence of Ca2+. We show that Ca2+ imparts significant local structural changes and speculate that these modifications may alter the structure of the extracellular loops in Cx26, and may thus account for the mechanism of hemichannel closure in the presence of mM [Ca2+]e.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0006291X14000874-main.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 989.47 kB
Formato Adobe PDF
989.47 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2791480
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact