Phospholipidosis (PLD) is characterized by an intracellular accumulation of phospholipids in lysosomes and concurrent development of concentric lamellar bodies. It is induced in humans and in animals by drugs with a cationic amphiphilic structure. The purpose of the present study was to identify a set of molecular biomarkers of PLD in rat blood and heart, hypothetically applicable in preclinical screens within the drug development process. A toxicological study was set up in rats orally treated up to 11 days with 300 mg/kg/day amiodarone (AMD). Light and transmission electronmicroscopy investigations were performed to confirm the presence of lamellar bodies indicative of phospholipid accumulation. The effects ofAMD upon the transcriptome of these tissues were estimated using DNA microarray technology. Microarray data analysis showed that a total of 545 and 8218 genes weremodulated byAMD treatment in heart and blood, respectively. Some genes implicated in the phospholipid accumulation in cells, such as phospholipase A2, showed similar alterations of gene expression. After transcriptome criteria of analysis and target selection, including also the involvement in the onset of PLD, 7 genes (Pla2g2a, Pla2g7, Gal, Il1b, Cebpb, Fcgr2b, Acer 2) were selected as candidate biomarkers of PLD in heart and blood tissues, and their potential usefulness as a sensitive screening test was screened and confirmed by quantitative Real-Time PCR analysis. Collectively, these data underscore the importance of transcriptional profiling in drug discovery and development, and suggest blood as a surrogate tissue for possible phospholipid accumulation in cardiomyocytes.
Molecular biomarkers of phospholipidosis in rat blood and heart after amiodarone treatment
GIANTIN, MERY;FERRARESSO, SERENA;DACASTO, MAURO;
2015
Abstract
Phospholipidosis (PLD) is characterized by an intracellular accumulation of phospholipids in lysosomes and concurrent development of concentric lamellar bodies. It is induced in humans and in animals by drugs with a cationic amphiphilic structure. The purpose of the present study was to identify a set of molecular biomarkers of PLD in rat blood and heart, hypothetically applicable in preclinical screens within the drug development process. A toxicological study was set up in rats orally treated up to 11 days with 300 mg/kg/day amiodarone (AMD). Light and transmission electronmicroscopy investigations were performed to confirm the presence of lamellar bodies indicative of phospholipid accumulation. The effects ofAMD upon the transcriptome of these tissues were estimated using DNA microarray technology. Microarray data analysis showed that a total of 545 and 8218 genes weremodulated byAMD treatment in heart and blood, respectively. Some genes implicated in the phospholipid accumulation in cells, such as phospholipase A2, showed similar alterations of gene expression. After transcriptome criteria of analysis and target selection, including also the involvement in the onset of PLD, 7 genes (Pla2g2a, Pla2g7, Gal, Il1b, Cebpb, Fcgr2b, Acer 2) were selected as candidate biomarkers of PLD in heart and blood tissues, and their potential usefulness as a sensitive screening test was screened and confirmed by quantitative Real-Time PCR analysis. Collectively, these data underscore the importance of transcriptional profiling in drug discovery and development, and suggest blood as a surrogate tissue for possible phospholipid accumulation in cardiomyocytes.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.