Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH4+; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors.
Bioreactor tests preliminary to landfill in situ aeration: A case study
RAGA, ROBERTO;COSSU, RAFFAELLO
2013
Abstract
Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH4+; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.