In this paper we present a product quadrature rule for Volterra integral equations with weakly singular kernels based on the generalized Adams methods. The formulas represent numerical solvers for fractional differential equations, which inherit the linear stability properties already known for the integer order case. The numerical experiments confirm the valuable properties of this approach.

Fractional convolution quadrature based on generalized Adams methods

NOVATI, PAOLO
2014

Abstract

In this paper we present a product quadrature rule for Volterra integral equations with weakly singular kernels based on the generalized Adams methods. The formulas represent numerical solvers for fractional differential equations, which inherit the linear stability properties already known for the integer order case. The numerical experiments confirm the valuable properties of this approach.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2687943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact