In this paper we present a product quadrature rule for Volterra integral equations with weakly singular kernels based on the generalized Adams methods. The formulas represent numerical solvers for fractional differential equations, which inherit the linear stability properties already known for the integer order case. The numerical experiments confirm the valuable properties of this approach.
Fractional convolution quadrature based on generalized Adams methods
NOVATI, PAOLO
2014
Abstract
In this paper we present a product quadrature rule for Volterra integral equations with weakly singular kernels based on the generalized Adams methods. The formulas represent numerical solvers for fractional differential equations, which inherit the linear stability properties already known for the integer order case. The numerical experiments confirm the valuable properties of this approach.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.